Data Assimilation Method Improves Coastal Storm Surge Modeling

May 25, 2021

May 25, 2021 — Hurricane storm surge is one of the most hazardous and difficult parts of a hurricane to forecast. Researchers at the University of North Carolina, Chapel Hill (UNC) have developed a data assimilation method for improving multi-day forecast of coastal water levels.

Data assimilation combines real-time measurements with model simulations. The method UNC researchers developed yielded substantially smaller errors in the water level estimates. Data and simulations from their case study of Hurricane Matthew are publicly available online through the DesignSafe cyberinfrastructure.

Lead author Taylor Asher, Department of Marine Sciences at UNC, was awarded a DesignSafe Dataset Award 2021, which recognized the dataset’s diverse contributions to natural hazards research.

Flooding from hurricane storm surge can devastate lives and property. A new method yields substantially smaller errors in water level estimates from computer simulations. The work won a DesignSafe Dataset Award 2021. Photo of Kinston, North Carolina, on October 14, 2016. Credit: FEMA News Photos

Surge can devastate life and property. High winds of more than 70 miles per hour can spray walls of breaking water over 20 feet high and more than a mile inland. Surge causes 49 percent of the hurricane deaths in the U.S (1963 to 2012), and it damages on average 10 billion dollars of property every year (1900–2005). Hurricane Matthew was the most powerful storm of the 2016 season, killing 28 people from flooding and causing 10.3 billion dollars of damage.

Asher’s team explored the physical components influencing water levels from storm surge that are not represented in even the best simulation codes, such as the widely-used Advanced Circulation model (ADCIRC). According to Asher, the physics in the model is too complicated and too costly to account for everything, especially under forecast settings where simulations must be completed quickly to be useful. Errors in simulating water level can be dominated by multi-day processes that are not included in the model, such as baroclinic processes, major oceanic currents, precipitation, steric fluctuations, and far-field atmospheric forcing.

When most people think of a hurricane, its intense, windy core comes to mind. But on its perimeter, there are also atmospheric pressure changes and winds going in different directions. Those far-field effects far away from the storm can have a sizable influence on the water levels that determine how bad flooding can get.

“One of the bigger realizations we made is of how strong these far-field wind effects could be on the total water level signal,” Asher said. “We found a fairly low-cost data assimilation method was able to have a really big improvement on the simulated water levels and really improve the quality and accuracy of the simulations.”

The data assimilation system can be broken down into four steps, (1) performing an unassimilated simulation, (2) time-averaging or low- pass filtering the difference between this simulation and observed water levels at observation sites, (3) generating a spatial difference field from these differences, (4) repeating the simulation with the added correction applied in the model. Credit: DOI: 10.1016/j.ocemod.2019.101483.

Asher described the assimilation technique they used as optimal interpolation, which allowed them to use the time-averaged difference between observed and simulated water levels to create a water level error surface that confines the error and filters out high frequency fluctuations such as astronomical tides. They then applied that correction back into the model as a forcing term to basically push water in the simulation to where it should be and away from where it shouldn’t.

They used the ADCIRC model coupled with the SWAN wave model.

”We focused on the lower frequency component of the water level errors,” Asher said. “These are water level changes that occur over the course of usually a few days, since the model is good at capturing everything that happens daily, or even more often.”

Asher’s team used three different sources of meteorological forcing of surface wind and sea level pressures: Generalized Asymmetric Holland Model (GAHM); a combination of GAHM with North American Mesoscale Forecast System (NAM) fields; and a reanalysis by OceanWeather Inc. that includes stepped frequency microwave radiometer (SFMR) data.

“The DesignSafe interface is easy to use and it’s also easy to SSH. It gives you a command line so you can type to move things around, instead of just a point-and-click interface. Having the ability to do both was really advantageous,” Asher said.

Water level anomaly around Hurricane Matthew. Numeric labels indicate the difference (in meters) between the OI water level anomaly surface and the simulated mean water level at the site; white lines are coastline and county boundaries. Credit: Taylor Asher, UNC.

Ultimately, improved water level forecasts help people on the ground respond to hurricane storm surge. It can be critical to not only know how high water will get, but how quickly it will rise.

“Knowing the timing of the water level coming in is critical for determining when to close floodgates,” Asher said. “The advances that we’ve made are going to have a big improvement on timing estimation.”

“Like a lot of things in science, the goal is to produce something as detailed, accurate, and simple as you can,” said Asher. “There are a lot of complexities and challenges in the science. Providing a system that allows comprehensive publication of the simulations (inputs and outputs), observations and analysis data, and all source code makes DesignSafe an invaluable tool. It means that I was able to transfer and publish our work in a way that means anyone could access the data and easily run the code with new data applicable for their project. This sort of reproducibility and transparency facilitates great science, and means that the nuance and complexity needn’t be reduced for the sake of publication.”

About DesignSafe

DesignSafe is a comprehensive cyberinfrastructure that is part of the NSF-funded Natural Hazard Engineering Research Infrastructure (NHERI) and provides cloud-based tools to manage, analyze, understand, and publish critical data for research to understand the impacts of natural hazards. The capabilities within the DesignSafe infrastructure are available at no-cost to all researchers working in natural hazards. The cyberinfrastructure and software development team is located at the Texas Advanced Computing Center (TACC) at The University of Texas at Austin, with a team of natural hazards researchers from the University of Texas, the Florida Institute of Technology, and Rice University comprising the senior management team.


Source: TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire