Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Contribution of Ryugu-like material to Earth’s volatile inventory by Cu and Zn isotopic analysis

An Author Correction to this article was published on 14 March 2023

This article has been updated

Abstract

Initial analyses showed that asteroid Ryugu’s composition is close to CI (Ivuna-like) carbonaceous chondrites (CCs) – the chemically most primitive meteorites, characterized by near-solar abundances for most elements. However, some isotopic signatures (for example, Ti, Cr) overlap with other CC groups, so the details of the link between Ryugu and the CI chondrites are not yet fully clear. Here we show that Ryugu and CI chondrites have the same zinc and copper isotopic composition. As the various chondrite groups have very distinct Zn and Cu isotopic signatures, our results point at a common genetic heritage between Ryugu and CI chondrites, ruling out any affinity with other CC groups. Since Ryugu’s pristine samples match the solar elemental composition for many elements, their Zn and Cu isotopic compositions likely represent the best estimates of the solar composition. Earth’s mass-independent Zn isotopic composition is intermediate between Ryugu/CC and non-carbonaceous chondrites (NCs), suggesting a contribution of Ryugu-like material to Earth’s budgets of Zn and other moderately volatile elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Zinc and copper elemental and isotopic compositions for Ryugu and carbonaceous chondrite samples.
Fig. 2: δ66Zn versus δ65Cu for Ryugu samples and carbonaceous chondrites.
Fig. 3: δ66Zn (this study) versus ε54Cr (refs. 5,30,53,54,55) for Ryugu samples and carbonaceous chondrites.
Fig. 4: Variations of ε66Zn among different groups of meteorites.

Similar content being viewed by others

Data availability

All data referred to in this article can be found in the tables or source data. Source data are provided with this paper.

Change history

References

  1. Lodders, K. Relative atomic solar system abundances, mass fractions, and atomic masses of the elements and their isotopes, composition of the solar photosphere, and compositions of the major chondritic meteorite groups. Space Sci. Rev. 217, 44 (2021).

    Article  ADS  Google Scholar 

  2. Morota, T. et al. Sample collection from asteroid (162173) Ryugu by Hayabusa2: implications for surface evolution. Science 368, 654–659 (2020).

    Article  ADS  Google Scholar 

  3. Tachibana, S. et al. Pebbles and sand on asteroid (162173) Ryugu: in situ observation and particles returned to Earth. Science 375, 1011–1016 (2022).

    Article  ADS  Google Scholar 

  4. Yada, T. et al. Preliminary analysis of the Hayabusa2 samples returned from C-type asteroid Ryugu. Nat. Astron. 6, 214–220 (2022).

    Article  ADS  Google Scholar 

  5. Yokoyama, T. et al. The first returned samples from a C-type asteroid show kinship to the chemically most primitive meteorites. Science https://doi.org/10.1126/science.abn7850 (2022).

    Article  Google Scholar 

  6. Nakamura, E. et al. On the origin and evolution of the asteroid Ryugu: a comprehensive geochemical perspective. Proc. Jpn Acad. Ser. B Phys. Biol. Sci. 98, 227–282 (2022).

    Article  ADS  Google Scholar 

  7. Ito, M. et al. A pristine record of outer Solar System materials from asteroid Ryugu’s returned sample. Nat. Astron. 6, 1163–1171 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  8. Wang, Z. & Becker, H. Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer. Nature 499, 328–331 (2013).

    Article  ADS  Google Scholar 

  9. Savage, P. S. et al. Copper isotope evidence for large-scale sulphide fractionation during Earth’s differentiation. Geochem. Perspect. Lett. https://doi.org/10.7185/geochemlet.1506 (2015).

  10. Schönbächler, M., Carlson, R. W., Horan, M. F., Mock, T. D. & Hauri, E. H. Heterogeneous accretion and the moderately volatile element budget of Earth. Science 328, 884–887 (2010).

    Article  ADS  Google Scholar 

  11. Braukmüller, N., Wombacher, F., Funk, C. & Münker, C. Earth’s volatile element depletion pattern inherited from a carbonaceous chondrite-like source. Nat. Geo. 12, 564–568 (2019).

    Article  ADS  Google Scholar 

  12. Varas-Reus, M. I., König, S., Yierpan, A., Lorand, J. P. & Schoenberg, R. Selenium isotopes as tracers of a late volatile contribution to Earth from the outer Solar System. Nat. Geo. 12, 779–782 (2019).

    Article  ADS  Google Scholar 

  13. Kubik, E. et al. Tracing Earth’s volatile delivery with tin. J. Geophys. Res. Solid Earth 126, e2021JB022026 (2021).

    Article  ADS  Google Scholar 

  14. Lodders, K. Solar system abundances and condensation temperatures of the elements. ApJ. 591, 1220 (2003).

    Article  ADS  Google Scholar 

  15. Day, J. M. & Moynier, F. Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon. Phil. Trans. RSA 372, 20130259 (2014).

    ADS  Google Scholar 

  16. Schaefer, L. & Fegley, B. Jr Chemistry of atmospheres formed during accretion of the Earth and other terrestrial planets. Icarus 208, 438–448 (2010).

    Article  ADS  Google Scholar 

  17. Luck, J. M., Othman, D. B. & Albarède, F. Zn and Cu isotopic variations in chondrites and iron meteorites: early solar nebula reservoirs and parent-body processes. Geochim. Cosmochim. Acta 69, 5351–5363 (2005).

    Article  ADS  Google Scholar 

  18. Pringle, E. A., Moynier, F., Beck, P., Paniello, R. & Hezel, D. C. The origin of volatile element depletion in early solar system material: Clues from Zn isotopes in chondrules. Earth Planet. Sci. Lett. 468, 62–71 (2017).

    Article  ADS  Google Scholar 

  19. Luck, J. M., Othman, D. B., Barrat, J. A. & Albarède, F. Coupled 63Cu and 16O excesses in chondrites. Geochim. Cosmochim. Acta 67, 143–151 (2003).

    Article  ADS  Google Scholar 

  20. Mahan, B., Moynier, F., Beck, P., Pringle, E. A. & Siebert, J. A history of violence: Insights into post-accretionary heating in carbonaceous chondrites from volatile element abundances, Zn isotopes and water contents. Geochim. Cosmochim. Acta 220, 19–35 (2018).

    Article  ADS  Google Scholar 

  21. Barrat, J. A. et al. Geochemistry of CI chondrites: major and trace elements, and Cu and Zn isotopes. Geochim. Cosmochim. Acta 83, 79–92 (2012).

    Article  ADS  Google Scholar 

  22. Rosman, K. J. R. A survey of the isotopic and elemental abundance of zinc. Geochim. Cosmochim. Acta 36, 801–819 (1972).

    Article  ADS  Google Scholar 

  23. Russell, W. A., Papanastassiou, D. A. & Tombrello, T. A. Ca isotope fractionation on the Earth and other solar system materials. Geochim. Cosmochim. Acta 42, 1075–1090 (1978).

    Article  ADS  Google Scholar 

  24. Clayton, R. N. & Mayeda, T. K. Oxygen isotope studies of carbonaceous chondrites. Geochim. Cosmochim. Acta 63, 2089–2104 (1999).

    Article  ADS  Google Scholar 

  25. Hellmann, J. L., Hopp, T., Burkhardt, C. & Kleine, T. Origin of volatile element depletion among carbonaceous chondrites. Earth Planet. Sci. Lett. 549, 116508 (2020).

    Article  Google Scholar 

  26. Pringle, E. A. & Moynier, F. Rubidium isotopic composition of the Earth, meteorites, and the Moon: evidence for the origin of volatile loss during planetary accretion. Earth Planet. Sci. Lett. 473, 62–70 (2017).

    Article  ADS  Google Scholar 

  27. Nie, N. X. et al. Imprint of chondrule formation on the K and Rb isotopic compositions of carbonaceous meteorites. Sci. Adv. 7, eabl3929 (2021).

    Article  ADS  Google Scholar 

  28. Savage, P. S., Moynier, F. & Boyet, M. Zinc isotope anomalies in primitive meteorites identify the outer solar system as an important source of Earth’s volatile inventory. Icarus 386, 115172 (2022).

    Article  Google Scholar 

  29. Steller, T., Burkhardt, C., Yang, C. & Kleine, T. Nucleosynthetic zinc isotope anomalies reveal a dual origin of terrestrial volatiles. Icarus 386, 115171 (2022).

    Article  Google Scholar 

  30. Trinquier, A., Birck, J. L. & Allègre, C. J. Widespread 54Cr heterogeneity in the inner solar system. ApJ. 655, 1179 (2007).

    Article  ADS  Google Scholar 

  31. Trinquier, A. et al. Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science 324, 374–376 (2009).

    Article  ADS  Google Scholar 

  32. Warren, P. H. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93–100 (2011).

    Article  ADS  Google Scholar 

  33. Budde, G. et al. Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth Planet. Sci. Lett. 454, 293–303 (2016).

    Article  ADS  Google Scholar 

  34. Kruijer, T. S., Burkhardt, C., Budde, G. & Kleine, T. Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Natl Acad. Sci. USA 114, 6712–6716 (2017).

    Article  ADS  Google Scholar 

  35. Burkhardt, C., Dauphas, N., Hans, U., Bourdon, B. & Kleine, T. Elemental and isotopic variability in solar system materials by mixing and processing of primordial disk reservoirs. Geochim. Cosmochim. Acta 261, 145–170 (2019).

    Article  ADS  Google Scholar 

  36. Nanne, J. A., Nimmo, F., Cuzzi, J. N. & Kleine, T. Origin of the non-carbonaceous–carbonaceous meteorite dichotomy. Earth Planet. Sci. Lett. 511, 44–54 (2019).

    Article  ADS  Google Scholar 

  37. Dauphas, N. et al. Calcium-48 isotopic anomalies in bulk chondrites and achondrites: evidence for a uniform isotopic reservoir in the inner protoplanetary disk. Earth Planet. Sci. Lett. 407, 96–108 (2014).

    Article  ADS  Google Scholar 

  38. Chambers, J. E. Planetary accretion in the inner Solar System. Earth Planet. Sci. Lett. 223, 241–252 (2004).

    Article  ADS  Google Scholar 

  39. Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).

    Article  ADS  Google Scholar 

  40. Javoy, M. et al. The chemical composition of the Earth: enstatite chondrite models. Earth Planet. Sci. Lett. 293, 259–268 (2010).

    Article  ADS  Google Scholar 

  41. Morbidelli, A., Libourel, G., Palme, H., Jacobson, S. A. & Rubie, D. C. Subsolar Al/Si and Mg/Si ratios of non-carbonaceous chondrites reveal planetesimal formation during early condensation in the protoplanetary disk. Earth Planet. Sci. Lett. 538, 116220 (2020).

    Article  Google Scholar 

  42. Frossard, P., Guo, Z., Spencer, M., Boyet, M. & Bouvier, A. Evidence from achondrites for a temporal change in Nd nucleosynthetic anomalies within the first 1.5 million years of the inner solar system formation. Earth Planet. Sci. Lett. 566, 116968 (2021).

    Article  Google Scholar 

  43. Alexander, C. M. D. An exploration of whether Earth can be built from chondritic components, not bulk chondrites. Geochim. Cosmochim. Acta 318, 428–451 (2022).

    Article  ADS  Google Scholar 

  44. Lodders, K. in From Dust to Terrestrial Planets (eds Benz, W. et al.) 341–354 (Springer, 2000).

  45. Schiller, M., Bizzarro, M. & Fernandes, V. A. Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon. Nature 555, 507–510 (2018).

    Article  ADS  Google Scholar 

  46. Schiller, M., Bizzarro, M. & Siebert, J. Iron isotope evidence for very rapid accretion and differentiation of the proto-Earth. Sci. Adv. 6, eaay7604 (2020).

    Article  ADS  Google Scholar 

  47. Mezger, K., Maltese, A. & Vollstaedt, H. Accretion and differentiation of early planetary bodies as recorded in the composition of the silicate Earth. Icarus 365, 114497 (2021).

    Article  Google Scholar 

  48. Johansen, A. et al. A pebble accretion model for the formation of the terrestrial planets in the Solar System. Sci. Adv. 7, eabc0444 (2021).

    Article  ADS  Google Scholar 

  49. Sossi, P. A., Nebel, O., O’Neill, H. S. C. & Moynier, F. Zinc isotope composition of the Earth and its behaviour during planetary accretion. Chem. Geol. 477, 73–84 (2018).

    Article  ADS  Google Scholar 

  50. van Kooten, E. & Moynier, F. Zinc isotope analyses of singularly small samples (<5 ng Zn): investigating chondrule-matrix complementarity in Leoville. Geochim. Cosmochim. Acta 261, 248–268 (2019).

    Article  ADS  Google Scholar 

  51. Moynier, F., Creech, J., Dallas, J. & Le Borgne, M. Serum and brain natural copper stable isotopes in a mouse model of Alzheimer’s disease. Sci. Rep. 9, 11894 (2019).

    Article  ADS  Google Scholar 

  52. Moynier, F. et al. Copper and zinc isotopic excursions in the human brain affected by Alzheimer’s disease. Alzheimer’s Dement. Diagn. Assist. Dis. Monit. 12, e12112 (2020).

    Google Scholar 

  53. Petitat, M., Birck, J. L., Luu, T. H. & Gounelle, M. The chromium isotopic composition of the ungrouped carbonaceous chondrite Tagish Lake. ApJ. 736, 23 (2011).

    Article  ADS  Google Scholar 

  54. Schoenberg, R. et al. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs. Geochim. Cosmochim. Acta 183, 14–30 (2016).

    Article  ADS  Google Scholar 

  55. Dey, S., Yin, Q. Z. & Zolensky, M. Exploring the planetary genealogy of Tarda—a unique new carbonaceous chondrite. In Proc. 52nd Lunar and Planetary Science Conference no. 2548, 2517 (Lunar and Planetary Institute, 2021).

  56. Zhu, K. et al. Chromium isotopic insights into the origin of chondrite parent bodies and the early terrestrial volatile depletion. Geochim. Cosmochim. Acta 301, 158–186 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the IPGP analytical platform PARI, Region Ile-de-France SESAME grant no. 12015908, and DIM ACAV+, the European Research Council grant agreement no. 101001282 (METAL) (F.M.), the UnivEarthS Labex programme (grant nos. ANR-10-LABX-0023 and ANR-11-IDEX-0005-02) (F.M.), JSPS Kaken-hi grants (S. Tachibana, H. Yurimoto and T. Yokoyama) and the CNES.

Author information

Authors and Affiliations

Authors

Contributions

F.M., M.P. and T. Yokoyama designed the project. H. Yurimoto and T. Yokoyama coordinated the isotopic analyses of the samples among members of the Hayabusa2-initial-analysis chemistry team. M.P. and T. Yokoyama processed the samples and separated the Zn and Cu from the matrix. M.P. measured the Zn and Cu isotopic compositions. M.P. and F.M. wrote the first draft of the manuscript, with contributions from T. Yokoyama, W.D., Y. Hu, Y.A., J.A., C.M.O’D.A., S.A., Y.A., K.B., M.B., A.B., R.W.C., M.C., B.-G.C., N.D., A.M.D., T.D.R., W.F., R.F., I.G., M.K.H., Y. Hibiya, H. Hidaka, H. Homma, P. H., G.R.H., K.I., T.I., T.R.I., A.I., M.I., S.I., N.K., N.T.K., K.K., T.K., S.K., A.N.K., M.-C.L., Y.M., K.D.M., M.M., K.M., I.N., K.N., D.N., A.N.N., L.N., M.O., A.P., C.P., L.P., L.Q., S.S.R., N.S., M.S., L.T., H.T., K.T., Y. Terada, T.U., S.W., M.W., R.J.W., K. Yamashita, Q.-Z.Y., S.Y., E.D.Y., H. Yui, A.-C.Z., T. Nakamura, H.N., T. Noguchi, R.O., K.S., H. Yabuta, M.A., A.M., A.N., M.N., T.O., T. Yada, K. Yogata, S.N., T.S., S. Tanaka, F.T., Y. Tsuda, S.-I.W., M.Y., S. Tachibana and H. Yurimoto.

Corresponding authors

Correspondence to Marine Paquet or Frederic Moynier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Herbert Palme, Katharina Lodders and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Supplementary Table

Supplementary Table 1. Sample weights.

Source data

Source Data Fig. 1

Literature data and sources.

Source Data Fig. 2

Literature data and sources.

Source Data Fig. 3

Literature data and sources.

Source Data Fig. 4

Literature data and sources.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paquet, M., Moynier, F., Yokoyama, T. et al. Contribution of Ryugu-like material to Earth’s volatile inventory by Cu and Zn isotopic analysis. Nat Astron 7, 182–189 (2023). https://doi.org/10.1038/s41550-022-01846-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-022-01846-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing